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The integrated space-time finite volume method for predicting time-dependent
fluid flow problems is developed. By enforcing discrete conservation over space-
time control volumes which fill the space-time domain, this method satisfies global
conservation in space-time while automatically satisfying the Leibnitz Rule and geo-
metrical conservation law. The method is validated using a variety of two-dimensional
problems featuring both prescribed and free boundary motion. Advances in other as-
pects of cell-centered finite volume discretization—most notably in the modelling
of diffusion terms and free surface flows—are also describegl1999 Academic Press
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1. INTRODUCTION

The finite volume method has proven to be very successful for solving the equat
of fluid dynamics. According to this method, the solution domain is filled with a me
which is used to define storage locations for each variable: typically these locations a
ther the mesh vertices (foertex-centeredhethods) or the cell centroids (foell-centered
methods). Finite control volumes are constructed around each storage location, and th
erning equations integrated over each control volume. The volume integrals are conv
to surface integrals by means of Gauss’ divergence theorem, and the surface integr:
approximated in terms of variables defined at the adjacent storage locations. By this pr¢
the differential equations are replaced by algebraic equations: one for each conser
equation for each control volume.

The finite volume method is strictly conservative in the sense that global conserve
is satisfied by the discrete equations. This follows provided the discrete transport thr
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498 ZWART, RAITHBY, AND RAW

each internal face has the same magnitude but opposite sign for the two control volu
which share the face. Consequently, if the algebraic equations for the two control volur
are added together, the terms arising from the surface integral for the face they share
cancel.

For time-dependent problems, the finite volume principle has traditionally been usec
discretize the spatial dimensions only. Time has been discretized using a finite differe
procedure, such as the Euler or Runge—Kutta methods. If the mesh undergoes mc
these methods require the use of the Leibnitz Rule to account for mesh motion. Glc
conservation is satisfied provided the geometrical conservation law (GCL) [3, 25, 27
satisfied. If, however, the mesh topology changes with time (for instance by vertex inser
or removal), these methods are not conservative.

In this paper a new approach to enforcing global conservation for time-dependent pt
lems is developed. It is based on discretizing time as well as space with the finite volu
principle and is therefore called thrgegrated space-tim@ST) finite volume method. With
this method, the space-time solution domain is filled with a space-time mesh, which is u
to construct space-time control volumes. The governing equations are integrated over
space-time control volume, and the volume integrals are converted to surface integrals
Gauss’ divergence theorem. The IST finite volume method is conservative in space-t
provided the discrete transport through each internal space-time face has the same
nitude but opposite sign for the two control volumes which share the face. Consequel
the Leibnitz Rule and GCL aiienplicitly satisfied, even if the mesh topology changes with
time. The price to be paid for this flexibility is the need to generate a space-time me
and discretize the equations in space-time. The IST concept was introduced and ap
to one-dimensional problems in a previous paper [30]. The present paper generalize:
concept to multi-dimensions.

The IST finite volume method bears some conceptual resemblance to space-time f
element methods, which have existed for some time [6-8, 22, 23]. In order to retain a tir
marching algorithm, these methods have introduced the notion of time slabs. The solutic
made discontinuous across time planes, which bound the time slabs, using the discontin
Galerkin method. With IST, we also use time slabs to obtain a time-marching scheme."
discontinuous Galerkin method is not needed, however, because IST is cell-centere
space-time, leading naturally to a discontinuous solution field at the time planes. Moreo
unlike most space-time finite element methods, our space-time meshing algorithm |
avoids the need for global remeshes and solution projections.

Potential application of the IST finite volume method occurs wherever conservation
time is important. One may identify two particular cases: time-accurate mesh adapta
and moving boundary problems. In this paper moving boundary problems are emphasi
We consider both prescribed boundary motion and and free surface flows. The impor
additional factor for free surface flows is the kinematic condition. Like a number of oth
methods [12, 13, 24], we enforce this condition in a surface-adaptive manner by mov
boundary vertices in such a way that the mass flows through the boundary are drive
zero; however, the mechanism for doing so is new.

The paper is organized as follows. In Section 2, our finite volume methodology will |
described for steady flows, without the complication of space-time. That methodology v
then be extended to space-time in Section 3. Section 4 will consider the application of |
to free surface flows, and Section 5 will provide some sample test cases.
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FIG. 1. Typical control volume faces and geometrical nomenclature. Left, internal face; right, boundary fa

2. DISCRETIZATION FOR STEADY FLOWS

In this section, our finite volume methodology for steady flow is described. An unstr
tured cell-centered method is chosen, where the mesh cells are the control volumes
which discrete conservation is enforced. Typical cells, together with interior and bounc
faces, are illustrated in Fig. 1. Important vectors shown on the diagram inglden), the
unit outward-directed normag; (or §), the unit vector joining cell centroids; amd(or r),
the vector joining a cell centroid to the face midpoint.

2.1. The Scalar Conservation Equation

Before describing the finite volume method for the full Navier—Stokes equations, i
useful to consider the simplscalar conservation equatiomvhich represents the conser-
vation of a generic scala¥ transported by advection and diffusion. The differential forn
of this equation at steady state is

Dpuig) | 9%

=0 1
a%; 9% ’ ( )

wherey; is the (known) velocity in the;-coordinate direction, and

ad
6 =-r20 @

" being the diffusion coefficient. By integrating this over a control volumand using
Gauss’ divergence theorem, we obtain the integral form

/p¢uinid8+/qinid8= 0. 3)
S S

For each control volume, the surface integrals are approximated using the midpoint
leading to discrete control volume equations of the form

Z (Ff+F) =0 (4)

f

F2 andF¢ respectively represent the numerical approximations of the advective and d
sive transport through face f. These approximations in general involve solution values
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solution gradients from the adjacent cells. Cell gradients are calculated using a least-sqt
technique [1].

The advective transport is given By = J¢r, whereJ is the mass flow through the face.
An upwind-biased discretization is used #r

¢f =¢up+ q)v¢'r|up7 (5)

where the subscript up denotes the upwind cell value. One may chbeseé, yielding a
first-order method® = 1, which applies a second-order correctionptg; or a nonlinear
expression to enforce boundedness near extrema [2, 26].

The diffusive transport is given by

F@=-TV$-AS, (6)

S being the face area. A second-order linearly exact discretization of this term has b
developed by decomposir1¥3d into contributions along two components,

Fl=-T(Ve- (@3 +Ve-(A—ad)S, (@)

where

$q — dp

V¢ - () =« As

(8)

andV¢ is the average of the adjacent cell gradients. The optimal decomposition is obtai

by choosingx =fi - §, in which case the two vectogsandfi — «§ become orthogonal [30].

This choice also extends unambiguously to anisotropic continua (such as space-time).
The algorithm for implementing the above discretization is as follows:

(1) Assemble an algebraic conservation equation for each cell. The assembly is
formed by looping over all faces, linearizing the fluxes through each face in terms of adjac
cell values, and scattering the coefficients and right-hand sides to the linear equation:
the adjacent cells. This leads to a matrix equation of the form

[Al{¢} = {b}. 9)
(2) Calculate the residual of the old solution field as
{r} = (b} — [Al{¢°}. (10)
Normalize the residuals. For cdf, the normalized residual is defined as

rp

_, 11
aP(¢max_¢min) ( )

Fp =

whereap is its central coefficient anpl,ax andgmin are the maximum and minimum solution
values.

(3) If the maximum normalized residual is reduced below its target value, stop. O
erwise solve the system of equations

[Al{s¢} = {r} (12)
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and update the solution field. The system is solved using the algebraic multigrid solve
Raw [20].
(4) Return to step (1).

2.2. The Navier—Stokes Equations

The steady, incompressible Navier—Stokes equations consist of the continuity equa

3Ui

= 1
e =0 (13)

and the momentum equation,

douu) __p | oy

. 14
0X; 9%; 0X; (14)

In this formulation,p is the modified pressure (having the hydrostatic component remov
and

ou ou;
o = M<_' . _1> (15)

0Xj 0X;

1 being the dynamic viscosity.
The integral forms of these equations are

/pui nidS=0, (16)
S
/pujn,-uidS—l—/pnidS—/tjinde: 0. an
S S S
In discrete form, the equations are
> k=0 (18)
f
S (FA+Fh+F) =0 (19)

f

whereJ, Ff, Fff’i, andF; respectively represent the numerical approximations of me
flow, advective momentum transport, pressure force, and viscous force at each face.

The advection term of the momentum equation is treated in the same manner as wit
scalar equation. The viscous force is also discretized in the same manner as the diff
flux for the scalar case. For the pressure term, a linearly exact centered discretizati
used,

with

1 _
pf=§(pp+po)+Vp~rc, (21)
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wherer . is the vector from the midpoint between centroids P and Q to the face midpoi
andV p is the average of the adjacent cell pressure gradients. An alternative choice wc
be to find the poinR on the line joining centroid® and Q which is closest to the face
midpoint, weightpp andpg according their distance from, and define . to be the vector
from R to the face midpoint. In our experience, this modification has a negligible effect
the solution.

The mass flow through a faceds= pus n S. It is important to discretize; ,, in a special
manner in order to avoid pressure-decoupling [15]. Standard colocated approaches fo
the lead of Rhie and Chow [21] in introducing a pressure gradient dependenae into
The particular form used here is

Po — Pp

Uin = Gin +adf(AS _Vp. é), (22)

wherel , is discretized in the same manner@sV p is the average of the adjacent cell

pressure gradients, and
1/Q Qo
— (P i 23
@ 2<ap " ao) (23)

a being the average central coefficient of the discrete momentum equatioripaadd
Q¢ being the volumes of cell® and Q.

The matrix equation for this system has a block structure and is solved using the s:
solver as for the scalar case [20].

3. DISCRETIZATION FOR UNSTEADY FLOWS

In this section, the IST finite volume algorithm is presented. Just as discrete conserva
equations were derived for spatial control volumes in the previous section, in this sec
discrete conservation equations will be derived for space-time control volumes. Bef
doing so, however, we will rewrite the governing equations in a more useful form a
briefly describe our space-time mesh generation procedure.

3.1. Mathematical Formulation

With the IST finite volume method, the discretizations of space and time are unified.
doing so, it is helpful to unify the space and time terms of the governing equations.
begin with the conventional form of the unsteady scalar equation,

e, dpud) 04
ot 0% 0X;

=0 (24)

The IST formulation requires the use of space-time vectors, which are distinguished fr
purely spatial vectors by a prime. As space-time vectors have an increased span, the sub
t is defined to be one more than the number of spatial dimensions. Thus the time coordi
is x{. By defining a “time velocity’u; = 1, the transient and advection terms of Eq. (24) art
combined as

d(pp) | dpuig) _ d(puio)
at ax X

(25)
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We must also ensure that the other terms maintain the special nature of time. For inst
diffusion occurs in space but not in time. The anisotropy of the space-time continuur
reflected by the definition of a space-time metric tengar

, )1 ifi =jandi,j<t, (26)
YiTlo  otherwise
Then Eq. (24) may be rewritten as
a(pu oq/
(/OU./ ®) Q./ —0 @7)
X X
where
/ - 09

In the same manner, the continuity and momentum equations may be written in IST f
as

au;
— =0, 29
ax/ (29)
a(pu:u) L 0p  9Tj;
“ooxl ]/ — = —VYii gy ])7 (30)
Xj axj axj
where
! 7 ! 8U|,( 8U|,
Tji = Vi M(ax{ + 8x{()' (31)

In the momentum equation, the free indesaries over the spatial dimensions. Itis fascinal
ing to observe, however, that if the time component is considered, the continuity eque
is recovered. It is therefore possible to express the mass and momentum system as a
“space-time momentum equation.” For our purposes, however, there does not seem
any advantage in doing so, and the continuity and momentum equations will be consic
separately.

3.2. Space-Time Mesh Generation

Just as conventional finite volume methods fill the spatial domain with spatial cells
also the IST finite volume method must fill the space-time domain with space-time ce
Our space-time meshing algorithm for moving boundary problems is described in d¢
elsewhere [28, 29]. Briefly, the space-time domain is divided into time slabs, illustra
for one spatial dimension in Fig. 2. Each time slab is tessellated using a four-step pr
dure, illustrated in Fig. 3. In step (a), the lower spatial mesh is extruded in time. In ¢
(b), the boundary vertices on the new time plane are moved to their new locations.
(c) modifies the mesh topology next to the boundary, in order to maintain the mesh qu
onthe newtime plane, by adding and removing vertices. This step may introduce new sj
time cell shapes (triangles rather than quadrilaterals). The final step (d) is to perform s
smoothing of vertices on the new time plane. This algorithm applies also to two dimensi
but with added complexity. The extrusion step produces triangular prism space-time ¢
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FIG. 2. Division of space-time domain into time slabs.

Adding and removing vertices near and on the boundary generates space-time tetral

and pyramids.
We anticipate still more complexity in extending the algorithm to three-dimension

problems, where four-dimensional space-time cells are required. In fact, it is our experie
that space-time mesh generation is the most difficult aspect of IST. Before it can f
widespread use, a more general space-time meshing strategy must be developed.
Typical faces which bound space-time control volumes for one spatial dimension
illustrated in Fig. 4. Important vectors shown on the diagranmarer /'), ' (or §), and
r/ (orr’), which are space-time extensions of the vectors shown in Fig. 1 for the stee
algorithm. We also distinguish betwespace-time facesvhich span the distance between
time planes; antime faceswhich lie on time planes.

3.3. Scalar Conservation Equation

The IST finite volume method for the scalar conservation equation begins by in
grating Eq. (27) over each space-time finite voluftie Since all terms are in divergence
form, Gauss’ divergence theorem is used to convert them to surface integrals,

[ punigas+ [ anias=o (32)
S S

whereS' is the space-time surface boundif?gandn is the outward-directed space-time
normal toS' .

' CATTTITTY

T—w ATV

FIG. 3. Generating a mesh for a time slab: (a) extrude in time, (b) move boundaries, (c) add/remove verti
(d) smooth.
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FIG. 4. Typical control volume faces in space-time. Top left, internal space-time face; top right, bound
space-time face; bottom, time face.

The surface integrals ae approximated at the midpoints of the space-time faces bou
the control volume. The resulting discrete equation is

S (FF+F) =0, (33)

f

whereF? andF{ respectively represent the approximations to the advective and diffus
transportthrough face f. They are written in terms of solution values and gradients (inclu
the time derivative) at the adjacent cells. Cell gradients are calculated using the least-sq
techniques, but with two complications. First, the least-squares stencil is one-sided in t
for the space-time cell neighbours from the next time level are not yet known. Second
least-squares matrix may be degenerate for some space-time cell shapes and may |
be adapted to include additional points from the previous time slab.

The advective transport through a facéf= Ji¢r. The mass transpod has distinctly
different interpretations at space-time and time faces. At space-time faces, it repre:
the quantity of mass which crosses the face during the time slab, whereas at time fac
represents the quantity of mass at that time level. At both fageis, obtained from the
same upwind-biased approximation:

& = Pup+ PV'P - 1'|yp. (34)

Itis interesting to note that choosikdg—= 0 for time faces on orthogonal space-time meshe
gives a discretization equivalent to the backward Euler method for the transient term, w
® =1 is similar to a three-level second-order backward-difference scheme. The cul
framework, however, is capable of maintaining second-order spatial and temporal acct
also on general space-time meshes. Nonlinear expressiods ficay also be used. For
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instance, the limiter of Barth and Jesperson [2] may be extended to space-time by requ
that all¢; around a cell be bounded by the space-time neighbours of the cell. The space-i
neighbours from the next time slab must be excluded, however, for they are not yet kno
As a result, spatial and temporal accuracy is reduced to first order not only near extre
but also wherever temporal gradients are large compared with spatial gradients.

The value ofps must be specified at all inflows into the space-time domain. This includ
not only traditional inflow boundaries but also the initial time plafevhereu - i’ = —1.
The values ofp; specified at these time faces are precisely the same as initial conditic
specified in traditional methods.

The diffusive transport through a face is

Fi=q /'S, (35)
whered’ is a vector having components

, , - 09
O = —Viji Fa*XJp

(36)
Unlike the corresponding term for steady flow, this expression involves an anisotro
medium. However, the discretization developed for steady flow may be extended to anisc
pic situations in an unambiguous manner by recognizing that the diffusive flux is driv
by the component of the gradient vector in the direction of the spatial componghByf
defining a vectom’ having componentsy, = y; nj, the diffusive transport becomes

F=-TI'V¢.-mS. (37)
This expression has the same form as Eq. (6) and may be decomposed in the same me
Fo=-T(V¢- -8 +Ve-(Mm—-ad))s. (38)

The natural choice for the scaling factois « = m’ - §. But at some highly nonorthogonal
space-time faces, this choice may produce negativeading to convergence difficulties.
Instead we choose =Max(m’ - §, 0). This diffusion discretization is valid not only for
space-time, but also for general anisotropic diffusivities. Because of the special natur
yji in space-time, howeveE is zero at time faces.

The algorithm used to implement this discretization is as follows:

(1) Generate the space-time mesh for the current time slab.

(2) Obtain the solution for the current time slab using the same algorithm as descri
for steady flows in Subsection 2.1. (Note that the face loop must include both time fa
and space-time faces.)

(3) Return to step (1) until the specified stopping time has been reached.

3.4. Navier—Stokes Equations

Upon integration over the space-time control volumes, Egs. (29) and (30) become
/ pun ds =0, (39)
S/

/pu{u’jn’de—i-/Vj/i pn/jds_/fj/in/jdgzo' (40)
s s s
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In discrete form, the equations are
> %=0, (41)

Z (FA+FE+FY) =0 (42)
f

J, A, Ffﬁ, andF; respectively represent the mass flow, advective momentum transp
pressure force, and viscous force at each face.

The advection and viscous terms of the momentum equation are treated in the
manner as the corresponding terms from the scalar equation. The pressure force at
time faces is a straightforward generalization of Eq. (20) to space-time,

FR =v/ipmS, (43)
where
1 N7 ’
Pr=5(Pp+PQ)+V'P-Te. (44)

The discretization of the mass flawpresented for steady flow also generalizes to spac
time, but is slightly more involved. It is defined ds= pu; | S, whereu; , =u; - " is the
perpendicular component of the space-time velocity vector. By definingo be the dot
product of the spatial componentsugfandfy’, n; to be the time component af, and using
the identityu; = 1, the mass flow may be expressedias- p(us,n + n;)S. The first term
represents the spatial contribution to the mass flow, i.e., the mass which exits (or er
the control volume due to fluid flow. The second term represents the temporal contribu
i.e., the mass left behind (or swallowed) as the face moves with time. At time faces,
spatial contribution vanishes, 9p= p §. At space-time facesy , is discretized in a similar
manner as with steady flow, but modified slightly to ensure time-step independence at st
state [10].

4. FREE SURFACE FLOWS

Free surface flow problems differ from those with prescribed boundary motion in
conditions which must be applied to the free surface. The momentum balance at the
surface is closed with theynamic conditionswhich state that the forces at the interfac
are in equilibrium. They are not difficult to apply.

The greater difficulty lies with th&inematic conditionwhich is used to determine the
interface position. It specifies that no mass flows through the free surface faces:

J=pu -nS=0. (45)

We implement this condition in a surface-adaptive framework, wherein the mesh confc
to the free surface. By satisfying the kinematic condition directly, rather than switching
a Lagrangian formulation at the free surface, overall conservation is strictly enforced.
This approach is similar to that developed by others [12, 17, 24] in a conventional fi
volume context. Enforcing this form of the kinematic condition for each face is awkwe
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in a cell-centered context, however, because the number of vertices which define the
surface may differ from the number of free faces. Workarounds have been developec
staggering the control volumes below the free surface [24] or adding control points to
free faces [12]. We propose a new approach, wherein the kinematic condition is not
forced for the faces, but rather for the vertices. Definto be the set of free faces which
touch a free vertex and;; to be a weighting factor expressing the fraction of the mass floy
through facej which is apportioned to vertex Then the condition we enforce i =0,
where

F = Z Jjwji (46)

i€éi

is the mass which crosses the portion of the free surface associated with viéveeghoose
wji =1/n, n being the number of vertices which touch face

The algorithm used to link the solution of the kinematic condition and the hydrodynan
equations is:

(1) Solve the continuity and momentum equations, treating the free surface as a p
sure boundary.

(2) Calculate the residual mass flon= F; for all vertices on the free surface.

(3) Move the vertices on the free surface so that 0. The procedure for this is
described below.

(4) Return to step (1) until the solution for the current time slab is converged.

Step (3) involves assembling and solving a matrix for the vertex displacements. Def
As¢ to be the displacement of vertéxin a specified direction (which we take to be the
perpendicular direction) which will drive the residual mass flows (defined in Step (2))
zero. Newton's method is used to obtain the displacements as

oF,
GEN

The Jacobian matridF; /95, is constructed numerically by shifting each vertex by a smal
amount and calculating the change in the mass flows for the surrounding vertices. In t
dimensions, the matrix is tridiagonal.

On its own, this algorithm is not stable. In particular, the case of there being fewer fi
faces than vertices results in a singular matrix, which manifests itself as unconstrai
wiggles in the free surface profile. Problems also exist when there are enough free fa
An analysis of the dominant effects on the matrix indicates that a typical row has f
form

AS = —Tj. 47

|
_%(AS—l +2AS + AS 1) = T, (48)

wherel is the length of the edges on the free surface. The resulting solution is prone
wiggles because the homogenized system admits solutions suchag—1)'.

Both types of wiggles are high-frequency (having the same frequency as the mesh)
are eliminated using a new procedure calfedss redistributioralong the free surface.
Consider the wiggly free surface shown in Fig. 5. The wiggle will be damped if the ma
flux Fp for vertex P is decreased by an amoudit and the mass flu¥q for vertex Q
is increased by the same amount. In essence, mass is redistributed between vertices
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Q

FIG.5. Top, a free surface wiggle; bottom, proposed damping mechanism.

free surface faces. I9j; represents the redistributed mass to veitexcross facg, the
mass flow through the portion of the free surface associated with veiigexedefined
as

F ZZ(Jij‘i +3J5). (49)

j€éi

It remains to find an expression for the redistributed m#ssFrom Fig. 5, it is clear
that a wiggle leads to a difference between the local edge tangent vextdrthe mean
edge tangent vectdr (The mean edge tangent is determined as the average of the
tex tangents which touch the edge, where each vertex tangent is itself the average
edge tangents which it touches.) The wiggle will be eliminated when the mass assoc
with the area of the cross-hatched triangle is redistributed from véXrtexvertexQ. If A
is the triangle area, then

J'=pA
|2 ~ =
~ pgtxd. (50)

ThenJjp =—J"andJjo =J".

With this algorithm, the kinematic condition is not satisfied for the faces. It is satisfit
however, both globally and in the neighbourhood of each vertex provided that, for e\
facej, > ic,, wji=1and}_,_, Jj =0, wherey; is the set of free vertices which touch
the face. A simple proof of this is found in [28].

5. TEST CASES

The IST solver was tested using a number of problems having analytical solutions [28,
Mesh refinement studies using these problems showed second-order accuracy in spa
time if no limiting of the advection terms was performed and first-order accuracy if limiti
was performed. The following test cases illustrate the behaviour on more difficult proble
These cases were executed on a SPARC Ultra 10 processor running at 300 MHz with
RAM.
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FIG. 6. Geometry of moving indentation test case, Witk 1.

5.1. Duct with a Moving Indentation

This section describes a test case involving prescribed boundary motion. Consid
channel featuring a moving indentation in one wall. Experimental studies of this type
flow have been carried out by Pedley and Stephanoff [16], and numerical studies have |
performed using a vorticity-stream function approach [18] and a finite volume method |
The geometry is shown in Fig. 6. The oscillation period’ignd the normalized time is
t* =t/ T. The height of the indentation at a particular timé&is .19(1 — cog2rt*)), and
the curved portion of the lower wall is described by

(51)

0.5h(1 — tanh4.14(x — 5.25)))  if 4b < X < 6.5D,
0.5h(1 + tanh(4.14(x + 5.25)))  if —6.5b < X < —4b.

As with the previous numerical studies, only the first cycle of the flow is solved. Ful
developed conditions are assumedtiat0. Solutions have been obtained on a coarse mes
(having initially 6622 triangles andit* =0.02) and a fine mesh (having initially 25,896
triangles and\t* = 0.01). The spatial meshes on various time planes around the downstre
end of the indentation for the coarse run are given in Fig. 7. The coarse mesh require
average of 15 iterations per time step to reduce all normalized residuals belbvietdling
to a total CPU time of 35 minutes. The fine mesh requires an average of 14 iterations
time step, leading to a total CPU time of 5 h.

Normalized shear stresses along the lower channel wall are plotted for both the co
and fine mesh runs in Fig. 8. The plot shows that a mesh-independent result has not yet
attained, although the qualitative behaviours are similar. These solutions have roughly
same accuracy as other computations [4]. It should be noted that the high-frequency k
in the shear stress profiles are induced by the irregular space-time cells where vertices
been added or removed.

5.2. Breaking Dam

The nexttest case involves the collapse of atwo-dimensional column of fluid. Experime
of this nature using several configurations were performed some time ago by Martin
Moyce [11]. It is also a common numerical test case [8, 9, 14,19]. We consider the c
having an initial aspect ratibg/wo=2, wherehg is the initial column height andvg
is the initial width. As viscous effects are negligible, the flow is modelled as invisci
A dimensionless time is defined #&5= ./2g/wot and a dimensionless front position as
w* = w/wo. The problem is solved in the time range:@* < 5 using a coarse mesh (having
initially 130 cells andAt* = 0.05) and a fine mesh (having 500 cells axitf = 0.025). The
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FIG.7. Meshinthe downstream vicinity of the indentation for the moving indentation test case on time pla
t*=0.1,0.2,...,1.0. The sequence runs by column.

spatial mesh for the fine grid is shown for various time levels in Fig. 9. The figure clee
demonstrates the capacity of the method to handle large changes in the free surface
maintaining mesh quality. The coarse mesh requires an average of 8 iterations per time
to reduce all normalized residuals below #pleading to a total CPU time of 37 s. The
fine mesh requires an average of 6 iterations per time step, leading to a total CPU tin
4.3 minutes.

To compare the numerical results with the experiments, a plot of front position
against time is given in Fig. 10. It is important to point out that the experimental rest
have undergone a time shift &ft* = 0.3 in order to compensate for uncertainties in th
time origin. This shift is consistent with what is performed in other numerical studies
the literature. With this shift, there is excellent agreement between the experimental
computed results. The plot also shows that the solution is nearly mesh-independent.

5.3. Overturning Wave

A final test case illustrates the capability of this free surface algorithm on a challenc
flowm—an overturning wave. The wave is generated in awater channel by a piston wavem
as described by Dommermughal.[5]. The piston has a time-varying frequency, amplitude
and phase carefully chosen to generate a plunging breaker some distance downstream.
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FIG. 8. Shear stress profiles along the lower channel wall for the moving indentation test case. Top, co

grid; bottom, fine grid.

authors performed both an experimental study and numerical calculations using a nonli
panel method. The wave channel geometry is illustrated in Fig. 11. The dimensions
normalized by the undisturbed water height, so that the hesghti and the length 20 m.
Inviscid flow is assumed, and the density and gravitational constant are set to unity.
Inthe present calculations, the mesh has initially 23,170 triangles, which are concentr:
nearx =12 where the wave overturns. The spacing also decreases with time in orde
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Mesh development for breaking dam test case on time pkre$, 5,1, 1.5, ...,5.0.

FIG. 9.
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FIG. 10. Comparison between calculated and experimental results for the breaking dam test case. The
shows the evolution of the dimensionless front positicrwith dimensionless timée*.

obtain adequate resolution of the overturning wave:-a61.76, when the computations
end, there are over 60,000 triangles. The initial time step is 0.1 and decreases with tirr
an adaptive manner, where no boundary vertex may move more than a specified frac
of its local spacing in one time step. The time step at the end of the computations is al
0.00035, and a total of 3200 time slabs are required. An average of four iterations
time slab is required to reduce all normalized residuals below,18ading to a total CPU
time of about 49 h. Most of this effort is required for the overturning phase. The collisic
phase is not simulated because the space-time meshing algorithm does not allow for su
reconnection.

The experimental and numerical results provided by Dommerrattd. [5] include
surface elevations at various locations along the wave channel. The elevations at the :
locations using the currentresults are plotted in Fig. 12. The agreement with the experime
data, also included in the plot, is excellent. Outlines of the predicted surface profile dur
the overturning stage are plotted for various times in Fig. 13. Figure 14 shows a close
of the mesh at =51.75, just before collision.

FIG. 11. Wave channel geometry used in overturning wave test case.
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FIG. 13. Outlines of the overturning wave at times-50.70, 51.05, 51.24, 51.40, 51.54, 51.65, 51.76.
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FIG. 14. Close-up of the overturning wavetat 51.75.

6. CONCLUSIONS

The integrated space-time (IST) finite volume method for unsteady flows, based
unified discretization of space and time, has been developed. The computational be
of time-marching are retained by subdividing the space-time domain into time slabs.
method is strictly conservative, even when mesh points are added or removed. The m
has been tested for moving boundary problems, including free surface flows. For this ¢
of flow, a new procedure for satisfying the kinematic condition has been developed.
the future, IST also holds promise for time-accurate conservative mesh adaptation
three-dimensional moving-boundary problems provided that a suitably general space:
meshing strategy can be developed.
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